Python API 1.47.0

PythonFaceSDK.BoundingBox

Face rectangle bounding box.

PythonFaceSDK.DetectEngine

Face detection engine.

PythonFaceSDK.DetectionResult

Result of DetectEngine.

PythonFaceSDK.FaceException

Custom runtime exception for FaceSDK methods.

PythonFaceSDK.FaceParameters

Structure for storing facial parameters.

PythonFaceSDK.FaceSDK

Face engines and pipelines aggregator.

PythonFaceSDK.HeadPose

Set of yaw, pith, and roll angles (in degrees).

PythonFaceSDK.Image

FaceSDK Image

PythonFaceSDK.ImageBatch

C++ image batch (image sequence).

PythonFaceSDK.ImageBatchWrapper

Python Wrapper for C++ image batch.

PythonFaceSDK.InitConfig

Configuration file parser.

PythonFaceSDK.Keypoints

Keypoints structure which is returned by DetectEngine.

PythonFaceSDK.LICENSE_FEATURE

IDLive Face license features enum.

PythonFaceSDK.LicenseFeatureInfo

IDLive Face license feature info.

PythonFaceSDK.LivenessResult

Liveness detection result.

PythonFaceSDK.Meta

Meta information provided for calibration.

PythonFaceSDK.Pipeline

Liveness detection pipeline.

PythonFaceSDK.PipelineResult

Liveness detection result.

PythonFaceSDK.QualityEngine

Quality estimation engine.

PythonFaceSDK.QualityResult

Quality estimation result.

PythonFaceSDK.STATUS

Error code enum.

class PythonFaceSDK.BoundingBox

Face rectangle bounding box.

property bottom_right_x

X position of right bottom corner.

Type:

int

property bottom_right_y

Y position of right bottom corner.

Type:

int

property left_top_x

X position of left top corner.

Type:

int

property left_top_y

Y position of left top corner.

Type:

int

class PythonFaceSDK.DetectEngine

Face detection engine.

detect(image: facesdk::Image) PythonFaceSDK.DetectionResult

Facial keypoints and bbox detecting method.

Parameters:

image (Image) – Image object.

Returns:

Detection result.

Return type:

DetectionResult

detectBatch(images: list[facesdk::Image]) list[PythonFaceSDK.OptionalDetectionResult]

Facial keypoints and bbox batch detecting method.

Parameters:

images (list) – List of Image object.

Returns:

List of optional detection results. The size of the result vector is guaranteed equal to images list size.

Return type:

list

detectOnlyBoundingBox(image: facesdk::Image) list[PythonFaceSDK.BoundingBox]

Facial bbox detecting method.

Parameters:

image (Image) – Image object.

Returns:

List of detected bounding boxes.

Return type:

list

detectOnlyBoundingBoxBatch(images: list[facesdk::Image]) list[PythonFaceSDK.OptionalBoundingBoxes]

Facial bbox batch detecting method.

Parameters:

images (list) – List of Image object.

Returns:

List of optional lists of detected bounding boxes results. The size of the result vector is guaranteed equal to images list size.

Return type:

list

class PythonFaceSDK.DetectionResult

Result of DetectEngine.

get_faces() list

Returns a list of FaceParameters.

Returns:

List of FaceParameters corresponding to detected faces.

Return type:

list

property orientation

Approximated image or face orientation in degrees.

Type:

int

exception PythonFaceSDK.FaceException(arg0: str, arg1: PythonFaceSDK.STATUS)

Custom runtime exception for FaceSDK methods.

status() PythonFaceSDK.STATUS

Get error code.

Returns:

Error code from STATUS enum.

Return type:

STATUS

what() str

Get error message as string.

Returns:

Error message in string format.

Return type:

str

class PythonFaceSDK.FaceParameters

Structure for storing facial parameters.

property bounding_box

Facial bounding box.

Type:

BoundingBox

property closed_eyes_probability

Closed eyes probability from 0 to 1.

Type:

float

property head_pose

Facial head pose (yaw, pitch, roll).

Type:

HeadPose

property interpupillary_distance

Distance between pupils.

Type:

float

property keypoints

Facial keypoints.

Type:

Keypoints

property occlusion_probability

Face occlusion probability from 0 to 1.

Type:

float

class PythonFaceSDK.FaceSDK

Face engines and pipelines aggregator.

static getDetectEngine(name: str, config: PythonFaceSDK.InitConfig) DetectEngineWrapper

Return face detection engine by name.

Parameters:
  • name (str) – Engine name.

  • config (InitConfig) – Configuration object

Returns:

Created face detection instance.

Return type:

DetectEngine

static getLicenseFeaturesInfo() list[PythonFaceSDK.LicenseFeatureInfo]

Returns information about all available licensed features.

static getLicenseInfo() str

Deprecated, use getLicenseFeaturesInfo. Returns information about a license if available.

static getPipeline(name: str, config: PythonFaceSDK.InitConfig) PipelineWrapper

Return pipeline engine by name.

Parameters:
  • name (str) – Engine name.

  • config (InitConfig) – Configuration object

Returns:

Created pipeline engine instance.

Return type:

Pipeline

static getQualityEngine(name: str, config: PythonFaceSDK.InitConfig) QualityEngineWrapper

Return face quality engine by name.

Parameters:
  • name (str) – Engine name.

  • config (InitConfig) – Configuration object

Returns:

Created face quality instance.

Return type:

QualityEngine

static getVersion() str

Returns the release version.

static setEnableClosedEyesDetection(enabled: bool) None

Toggles closed eyes detection. When enabled the faces with closed eyes will be rejected.

Parameters:

enabled (bool) – Whether to enable the detection or not.

Note: Function call is equivalent to setting FACESDK_ENABLE_CLOSED_EYES_DETECTION environment variable before loading FaceSDK library. Function call takes precedence over environment variables.

static setEnableFaceOcclusionDetection(enabled: bool) None

Toggles face occlusion detection. When enabled the occluded faces will be rejected.

Parameters:

enabled (bool) – Whether to enable the detection or not.

Note: Function call is equivalent to setting FACESDK_ENABLE_FACE_OCCLUSION_DETECTION environment variable before loading FaceSDK library. Function call takes precedence over environment variables.

static setEnableLogging(enable_logging: bool) None

Sets whether to enable FaceSDK logging. Logging is enabled by default.

Parameters:

enable_logging (bool) – Whether to enable logging or not.

Note: Function call is equivalent to setting FACESDK_ENABLE_LOGGING environment variable before loading FaceSDK library. Function call takes precedence over environment variables.

static setLicense(arg0: str) None

Sets a new license.

static setNumThreads(num_threads: int, threading_level: PythonFaceSDK.ThreadingLevel) None

Sets the maximum number of threads available for FaceSDK at the specified level.If 0 is passed, then the optimal number of threads is detected automatically (the same effect is achieved if setNumThreads is not called).

Parameters:
  • num_threads (int) – Maximum number of threads available for FaceSDK at the specified level.

  • threading_level (ThreadingLevel) – Threading level to apply setting.

Note: Function call is equivalent to setting FACESDK_NUM_THREADS_PIPELINE, FACESDK_NUM_THREADS_ENGINE or FACESDK_NUM_THREADS_OPERATOR environment variable before loading FaceSDK library. Function call takes precedence over environment variables.

static setOvBindThreads(ov_bind_threads: bool) None

Sets the CPU bind setting for OpenVINO backend.

Parameters:

ov_bind_threads (bool) – Whether bind execution threads to CPU physical cores or not.

Note: Function call is equivalent to setting FACESDK_OV_BIND_THREADS environment variable before loading FaceSDK library. Function call takes precedence over environment variables. Function does not take effect if FaceSDK build does not use OpenVINO.

static setOvMaxBatchSize(ov_max_batch_size: int) None

Function does not take effect if FaceSDK build does not use OpenVINO.

static setOvNumThroughputStreams(ov_num_throughput_streams: int) None

Sets the number of CPU execution streams for OpenVINO backend.

Parameters:

ov_num_throughput_streams (int) – Number of CPU execution streams, valid values are -1 (auto-tune number of streams), 0 (use the default setting) and any positive value, other values are dropped without an error.

Note: Function call is equivalent to setting FACESDK_OV_NUM_THROUGHPUT_STREAMS environment variable before loading FaceSDK library. Function call takes precedence over environment variables. Function does not take effect if FaceSDK build does not use OpenVINO.

class PythonFaceSDK.HeadPose

Set of yaw, pith, and roll angles (in degrees).

property pitch

Yaw angle in degrees.

Type:

float

property roll

Roll angle in degrees.

Type:

float

property yaw

Pitch angle in degrees.

Type:

float

class PythonFaceSDK.Image

FaceSDK Image

static createImage(*args, **kwargs)

Overloaded function.

  1. createImage() -> PythonFaceSDK.Image

Create empty Image object.

Returns:

Created image object.

Return type:

Image

  1. createImage(bytes: list) -> PythonFaceSDK.Image

Create Image object from binary file in memory buffer.

Parameters:

bytes (list) – List of bytes.

Returns:

Created image object.

Return type:

Image

  1. createImage(path: str) -> PythonFaceSDK.Image

Create Image object from disk.

Parameters:

path (str) – Path to image file on disk.

Returns:

Created image object.

Return type:

Image

  1. createImage(pixels: numpy.ndarray[numpy.uint8], rows: int, cols: int, format: PythonFaceSDK.COLOR_ENCODING) -> PythonFaceSDK.Image

Create Image object from memory buffer.

Parameters:
  • pixels (np.array) – uint8 Numpy array containig raw pixel values.

  • rows (int) – Number of image rows.

  • cols (int) – Number of image cols.

  • format (COLOR_ENCODING) – Color encoding format of input buffer.

Returns:

Created image object.

Return type:

Image

class PythonFaceSDK.ImageBatch

C++ image batch (image sequence).

property n_images

Number of images in ImageBatch.

Type:

int

class PythonFaceSDK.ImageBatchWrapper

Python Wrapper for C++ image batch.

assign(images: list) None

Assign images to image batch.

Parameters:

images (list) – List of images.

getCppBatch() PythonFaceSDK.ImageBatch

Get C++ instance of ImageBatch.

Returns:

C++ image batch instance.

Return type:

ImageBatch

class PythonFaceSDK.InitConfig

Configuration file parser.

static createConfig(*args, **kwargs)

Overloaded function.

  1. createConfig(dir: str, config_file_name: str) -> PythonFaceSDK.InitConfig

Configuration object creator.

Parameters:
  • dir (str) – Path to directory with configuration files.

  • config_file_name (str) – Configuration file name.

Returns:

Created init config instance.

Return type:

InitConfig

  1. createConfig(file_path: str) -> PythonFaceSDK.InitConfig

Configuration object creator.

Parameters:

file_path (str) – Full path to configuration file.

Returns:

Created init config instance.

Return type:

InitConfig

class PythonFaceSDK.Keypoints

Keypoints structure which is returned by DetectEngine.

get_landmarks68() numpy.ndarray

Returns coordinates of 68 facial landmarks.

Returns:

2D int32 Numpy array representing 68 facial landmarks.

Return type:

np.array

set_landmarks68(landmarks68: numpy.ndarray[numpy.int32]) None

Set coordinates of 68 facial landmarks.

Parameters:

landmarks68 (np.array) – 2D int32 Numpy array representing 68 facial landmarks.

class PythonFaceSDK.LicenseFeatureInfo

IDLive Face license feature info.

property expiration_date

The license expiration date. The format is the ISO-8601 instant, such as 2023-12-03T23:59:59Z.

property feature

License feature.

class PythonFaceSDK.LivenessResult

Liveness detection result.

property probability

Probability of liveness in range=[0, 1].

Type:

float

property score

Classifiers RAW output.

Type:

float

class PythonFaceSDK.Meta

Meta information provided for calibration.

class CALIBRATION(value: int)

Liveness checking threshold calibration type.

property name
class MANUFACTURE(value: int)

Device manufacture.

property name
class MODEL(value: int)

Device model

property name
class OS(value: int)

OS type for calibration.

property name
property calibration

Liveness checking threshold calibration type to use.

Type:

CALIBRATION

property manufacture

Device manufacture type.

Type:

MANUFACTURE

property model

Device model type.

Type:

MODEL

property os

Device OS type.

Type:

OS

property os_version

OS version.

Type:

str

class PythonFaceSDK.Pipeline

Liveness detection pipeline.

checkLiveness(*args, **kwargs)

Overloaded function.

  1. checkLiveness(self: PythonFaceSDK.Pipeline, image: PythonFaceSDK.Image) -> PythonFaceSDK.PipelineResult

Check liveness of face from input image.

Parameters:

image (Image) – Input image.

Returns:

Result of liveness detection.

Return type:

PipelineResult

  1. checkLiveness(self: PythonFaceSDK.Pipeline, image: PythonFaceSDK.Image, meta: PythonFaceSDK.Meta) -> PythonFaceSDK.PipelineResult

Check liveness of face from input image.

Parameters:
  • image (Image) – Input image.

  • meta (Meta) – Meta information about device.

Returns:

Result of liveness detection.

Return type:

PipelineResult

  1. checkLiveness(self: PythonFaceSDK.Pipeline, image_batch: PythonFaceSDK.ImageBatch) -> PythonFaceSDK.PipelineResult

Perform liveness check on a sequence of photos (image batch). A single results corresponding to the whole image batch will be produced.

Parameters:

image_batch (ImageBatch) – Input batch of images (a sequence of photos).

Returns:

A single liveness result for a given sequence of photos.

Return type:

PipelineResult

  1. checkLiveness(self: PythonFaceSDK.Pipeline, image_batch: PythonFaceSDK.ImageBatch, meta: PythonFaceSDK.Meta) -> PythonFaceSDK.PipelineResult

Perform liveness check on a sequence of photos (image batch). A single results corresponding to the whole image batch will be produced.

Parameters:
  • image_batch (ImageBatch) – Input batch of images (a sequence of photos).

  • meta (Meta) – Meta information about device.

Returns:

: A single liveness result for a given sequence of photos.

Return type:

PipelineResult

checkLivenessBatch(*args, **kwargs)

Overloaded function.

  1. checkLivenessBatch(self: PythonFaceSDK.Pipeline, images: list[PythonFaceSDK.Image]) -> list[PythonFaceSDK.OptionalPipelineResult]

This method implements batched liveness check.

Parameters:

images (list) – List of Image object.

Returns:

List of optional liveness check results. The size of the result vector is guaranteed equal to images list size.

Return type:

list

  1. checkLivenessBatch(self: PythonFaceSDK.Pipeline, images: list[PythonFaceSDK.Image], meta: list[PythonFaceSDK.Meta]) -> list[PythonFaceSDK.OptionalPipelineResult]

This method implements batched liveness check.

Parameters:
  • images (list) – List of Image object.

  • meta (list) – List of Meta information about device for each provided image.

Returns:

List of optional liveness check results. The size of the result vector is guaranteed equal to images list size.

Return type:

list

class PythonFaceSDK.PipelineResult

Liveness detection result.

property liveness_result

Liveness result.

Type:

LivenessResult

property quality_result

Quality result.

Type:

QualityResult

class PythonFaceSDK.QualityEngine

Quality estimation engine.

checkQuality(image: PythonFaceSDK.Image) PythonFaceSDK.QualityResult

Check quality of face from input image.

Parameters:

image (Image) – Input image

Returns:

Result of quality estimation.

Return type:

QualityResult

checkQualityBatch(images: list[PythonFaceSDK.Image]) list[PythonFaceSDK.OptionalQualityResult]

Check quality of face from input images batch.

Parameters:

images (list) – List of Image object.

Returns:

List of optional quality check results. The size of the result vector is guaranteed equal to images list size.

Return type:

list

class PythonFaceSDK.QualityResult

Quality estimation result.

property class_

Class, 0 - bad image, 1 - good image.

Type:

bool

property score

Quality RAW output.

Type:

float

class PythonFaceSDK.STATUS(value: int)

Error code enum.

FACE_TOO_CLOSE

A distance between face and image border is too small for preprocessing issues.

FACE_CLOSE_TO_BORDER

Face is too close to one or more borders. May reduce the accuracy ofspoofing detection because edges of face may not be seen.

FACE_CROPPED

Face is cropped. May reduce the accuracy of spoofing detection because edges of face may not be seen.

FACE_NOT_FOUND

Face detector can’t find face on image.

TOO_MANY_FACES

Face detector found more than one face on image.

FACE_TOO_SMALL

Facial area is not big enough for analysis.

FACE_ANGLE_TOO_LARGE

Facial out-of-plane rotation angle is extremely large.

FAILED_TO_READ_IMAGE

File decoding error.

FAILED_TO_WRITE_IMAGE

File encoding error.

FAILED_TO_READ_MODEL

Model deserializing error.

FAILED_TO_BUILD_INTERPRETER

tflite::Interpreter building error.

FAILED_TO_INVOKE_INTERPRETER

tflite::Interpreter invoking error.

FAILED_TO_ALLOCATE

Memory allocation error.

INVALID_CONFIG

Config deserializing error.

NO_SUCH_OBJECT_IN_BUILD

Engine or backend is not supported by the build.

FAILED_TO_PREPROCESS_IMAGE_WHILE_PREDICT

Liveness prediction error.

FAILED_TO_PREPROCESS_IMAGE_WHILE_DETECT

Face detection error.

FAILED_TO_PREDICT_LANDMARKS

Landmarks prediction error.

INVALID_FUSE_MODE

Invalid fuse mode provided.

NULLPTR

Nullptr provided.

LICENSE_ERROR

Some error occurred during license checking.

INVALID_META

Invalid Meta value.

UNKNOWN

Unhandled exception in the code.

OK

No errors.

FACE_IS_OCCLUDED

The biggest face on the input image is occluded, so liveness check is not possible.

FAILED_TO_FETCH_COREML_DECRYPTION_KEY

Failed to fetch CoreML model decryption key from Apple servers.

EYES_CLOSED

Eyes are closed.

property name